Typing Game with Python and Turtle (Source Code Included)

Develop a typing game to improve keyboard skill as demonstrated in the following YouTube video.

Typing Game with Python and Turtle
Typing Game with Python and Turtle

At any moment ten random letters fall from the top of screen. When you hit a correct letter from keyboard, that letter disappears and is replaced by a new random letter dropping from the top. Also, your score will increase by 1. When you hit an incorrect letter, your score will decrease by 1.

Make these letters fall at random speeds and also let the speed increase gradually as time progresses. The game will end when a letter falls to the bottom of the screen.

You will need to use Turtle’s ontimer() and onkey() events to implement this project.

Source Code:

import turtle
import random

screen = turtle.Screen()
screen.setup(1000,1000)
screen.title('Typing Game - PythonTurtle.Academy')
screen.bgcolor('blue')
screen.tracer(0,0)
turtle.hideturtle()
turtle.up()
turtle.color('red')
score_turtle = turtle.Turtle()
score_turtle.color('red')
score_turtle.up()
score_turtle.hideturtle()
turtle.goto(350,400)
turtle.write('Score: ', align='center', font=('Courier',25,'normal'))

min_speed = 5
max_speed = 30
letters = []
speeds = []
pos = []
lts = []
n = 10
game_over = False
score = 0

def increase_difficulty():
    global min_speed, max_speed
    min_speed += 1
    max_speed += 1
    screen.ontimer(increase_difficulty,5000)

def draw_game_over():
    turtle.goto(0,0)
    turtle.color('red')
    turtle.write('GAME OVER', align='center', font=('Courier',50,'normal'))
    turtle.goto(0,-150)
    turtle.color('orange')
    turtle.write('Your Score is {}'.format(score), align='center', font=('Courier',40,'normal'))
    screen.update()

def draw_score():
    score_turtle.clear()
    score_turtle.goto(420,400)
    score_turtle.write('{}'.format(score),align='center',font=('Courier',25,'normal'))
    screen.update()
    
def draw_letters():
    global game_over
    for i in range(len(letters)):
        lts[i].clear()
        lts[i].goto(pos[i])
        lts[i].write(letters[i],align='center',font=('courier',20,'normal'))
        pos[i][1] -= speeds[i]
        if pos[i][1]<-500:
            game_over = True
            draw_game_over()
            return
    screen.update()
    screen.ontimer(draw_letters,50)

def f(c): # handle keyboard press
    global score
    if c in letters:
        score += 1
        k = letters.index(c)
        while True:
            l = chr(ord('a')+random.randrange(26))
            if l not in letters:
                letters[k] = l
                break            
        pos[k] = [random.randint(-450,450),500]        
        speeds[k] = random.randint(min_speed,max_speed)
    else: score -= 1
    draw_score()
        
for _ in range(n):
    lts.append(turtle.Turtle())
    while True:
        l = chr(ord('a')+random.randrange(26))
        if l not in letters:
            letters.append(l)
            break
    speeds.append(random.randint(min_speed,max_speed))
    pos.append([random.randint(-450,450),500])
    
for i in range(n):
    lts[i].speed(0)
    lts[i].hideturtle()
    lts[i].up()
    lts[i].color('yellow')
    
draw_letters()
increase_difficulty()

screen.onkey(lambda: f('a'), 'a')
screen.onkey(lambda: f('b'), 'b')
screen.onkey(lambda: f('c'), 'c')
screen.onkey(lambda: f('d'), 'd')
screen.onkey(lambda: f('e'), 'e')
screen.onkey(lambda: f('f'), 'f')
screen.onkey(lambda: f('g'), 'g')
screen.onkey(lambda: f('h'), 'h')
screen.onkey(lambda: f('i'), 'i')
screen.onkey(lambda: f('j'), 'j')
screen.onkey(lambda: f('k'), 'k')
screen.onkey(lambda: f('l'), 'l')
screen.onkey(lambda: f('m'), 'm')
screen.onkey(lambda: f('n'), 'n')
screen.onkey(lambda: f('o'), 'o')
screen.onkey(lambda: f('p'), 'p')
screen.onkey(lambda: f('q'), 'q')
screen.onkey(lambda: f('r'), 'r')
screen.onkey(lambda: f('s'), 's')
screen.onkey(lambda: f('t'), 't')
screen.onkey(lambda: f('u'), 'u')
screen.onkey(lambda: f('v'), 'v')
screen.onkey(lambda: f('w'), 'w')
screen.onkey(lambda: f('x'), 'x')
screen.onkey(lambda: f('y'), 'y')
screen.onkey(lambda: f('z'), 'z')

screen.listen()
screen.mainloop()

Continuous Clock with Python Turtle (Source Code)

In a previous project you animated a clock. Improve the clock by making all hands move continuously.

Source Code:

import turtle
import datetime
import math

screen = turtle.Screen()
screen.title('Continuous Clock - PythonTurtle.Academy')
screen.bgcolor('sky blue')
screen.setup(1000,1000)
screen.setworldcoordinates(-1000,-1000,1000,1000)
screen.tracer(0,0)


class clock:
    def __init__(self,hour,minute,second):
        self.hour, self.minute, self.second = hour, minute, second
        self.microsecond = 0
        self.face = turtle.Turtle()
        self.hand = turtle.Turtle()
        self.face.hideturtle()
        self.hand.hideturtle()

    def draw(self):
        self.draw_face()
        self.draw_hand()
        
    def draw_face(self):
        self.face.clear()
        self.face.up()
        self.face.goto(0,-700)
        self.face.pensize(4)
        self.face.down()
        self.face.fillcolor('white')
        self.face.begin_fill()
        self.face.circle(700,steps=100)
        self.face.end_fill()
        self.face.up()
        self.face.goto(0,0)
        self.face.dot(10)
        self.face.pensize(2)
        for angle in range(0,360,6):
            self.face.up()
            self.face.goto(0,0)
            self.face.seth(90-angle)
            self.face.fd(620)
            self.face.down()
            self.face.fd(30)
            
        self.face.pensize(3)
        for angle in range(0,360,30):
            self.face.up()
            self.face.goto(0,0)
            self.face.seth(90-angle)
            self.face.fd(600)
            self.face.down()
            self.face.fd(50)
            
        self.face.pensize(4)
        for angle in range(0,360,90):
            self.face.up()
            self.face.goto(0,0)
            self.face.seth(90-angle)
            self.face.fd(580)
            self.face.down()
            self.face.fd(70)
        
    def draw_hand(self):    
        self.hand.clear()       
        self.hand.up()
        self.hand.goto(0,0)
        self.hand.seth(90-math.floor(((self.hour%12)*60*60*1000000+self.minute*60*1000000+self.second*1000000+self.microsecond)/3600000000*30))
        self.hand.down()
        self.hand.color('black')
        self.hand.pensize(6)
        self.hand.fd(300)

        self.hand.up()
        self.hand.goto(0,0)
        self.hand.seth(90-math.floor((self.minute*60*1000000+self.second*1000000+self.microsecond)/60000000*6))
        self.hand.down()
        self.hand.color('black')
        self.hand.pensize(4)
        self.hand.fd(400)

        self.hand.up()
        self.hand.color('red')
        self.hand.goto(0,0)
        self.hand.dot(5)
        self.hand.seth(90-(self.second*1000000+self.microsecond)/1000000*6)
        self.hand.down()
        self.hand.pensize(2)
        self.hand.fd(570)

def animate():
    global c
    d = datetime.datetime.now()
    c.hour, c.minute, c.second, c.microsecond = d.hour, d.minute, d.second, d.microsecond
    c.draw_hand()
    screen.update()
    screen.ontimer(animate,100)
    
d = datetime.datetime.now()
c = clock(d.hour,d.minute,d.second)
c.draw_face()
screen.update()
animate()

Clock with Python Turtle (Source Code)

Define a ‘clock’ class with Python and use the datetime library to draw an animated clock shown.

Source Code:

import turtle
import datetime
screen = turtle.Screen()
screen.title('Clock - PythonTurtle.Academy')
screen.setup(1000,1000)
screen.setworldcoordinates(-1000,-1000,1000,1000)
screen.tracer(0,0)
screen.bgcolor('sky blue')

class clock:
    def __init__(self,hour,minute,second):
        self.hour, self.minute, self.second = hour, minute, second
        self.face = turtle.Turtle()
        self.hand = turtle.Turtle()
        self.face.hideturtle()
        self.hand.hideturtle()

    def draw(self):
        self.draw_face()
        self.draw_hand()
        
    def draw_face(self):
        self.face.clear()
        self.face.up()
        self.face.goto(0,-700)
        self.face.pensize(5)
        self.face.down()
        self.face.fillcolor('white')
        self.face.begin_fill()
        self.face.circle(700)
        self.face.end_fill()
        self.face.up()
        self.face.goto(0,0)
        self.face.dot(10)
        self.face.pensize(2)
        for angle in range(0,360,6):
            self.face.up()
            self.face.goto(0,0)
            self.face.seth(90-angle)
            self.face.fd(620)
            self.face.down()
            self.face.fd(30)
        self.face.pensize(4)
        for angle in range(0,360,30):
            self.face.up()
            self.face.goto(0,0)
            self.face.seth(90-angle)
            self.face.fd(600)
            self.face.down()
            self.face.fd(50)
        
    def draw_hand(self):    
        self.hand.clear()       
        self.hand.up()
        self.hand.goto(0,0)
        self.hand.seth(90-self.hour%12*360//12)
        self.hand.down()
        self.hand.color('black')
        self.hand.pensize(6)
        self.hand.fd(300)

        self.hand.up()
        self.hand.goto(0,0)
        self.hand.seth(90-self.minute*6)
        self.hand.down()
        self.hand.color('black')
        self.hand.pensize(4)
        self.hand.fd(400)

        self.hand.up()
        self.hand.color('red')
        self.hand.goto(0,0)
        self.hand.dot(5)
        self.hand.seth(90-self.second*6)
        self.hand.down()
        self.hand.pensize(2)
        self.hand.fd(600)

def animate():
    global c
    d = datetime.datetime.now()
    c.hour, c.minute, c.second = d.hour, d.minute, d.second
    c.draw_hand()
    screen.update()
    screen.ontimer(animate,1000)
    
d = datetime.datetime.now()
c = clock(d.hour,d.minute,d.second)
c.draw_face()
screen.update()
animate()

Animation of Sierpinski Triangle Tree with Turtle (Source Code)

Animate the transition from Sierpinski Triangle tree to Fractal tree as shown. This project is related to Sierpinski Triangle and Fractal Tree.

Source Code:

import turtle
turtle.title('Sierpinski Tree Animation - PythonTurtle.Academy')
turtle.setworldcoordinates(-2000,-2000,2000,2000)
screen = turtle.Screen()
screen.tracer(0,0)
turtle.speed(0)
turtle.hideturtle()

def sierpinski_tree(x,y,length,tilt,angle,n):
    if n==0: return
    turtle.up()
    turtle.goto(x,y)
    turtle.seth(tilt)
    turtle.down()
    turtle.fd(length)
    sierpinski_tree(turtle.xcor(),turtle.ycor(),length/2,turtle.heading(),angle,n-1)
    
    turtle.up()
    turtle.goto(x,y)
    turtle.seth(tilt+angle)
    turtle.down()
    turtle.fd(length)
    sierpinski_tree(turtle.xcor(),turtle.ycor(),length/2,turtle.heading(),angle,n-1)

    turtle.up()
    turtle.goto(x,y)
    turtle.seth(tilt-angle)
    turtle.down()
    turtle.fd(length)
    sierpinski_tree(turtle.xcor(),turtle.ycor(),length/2,turtle.heading(),angle,n-1)

def animate():
    global angle
    turtle.clear()
    sierpinski_tree(0,-250,1000,90,angle,7)
    screen.update()
    angle = 120 if angle <= 20 else angle-2
    screen.ontimer(animate,50)

angle = 120
animate()
screen.mainloop()

Chase the Cycler Simulation (with Source Code)

In a previous project called massive chasing game, you simulated a game where you created 100 turtles and each turtle chase the next one and the last turtle chase the first one.

In this project, instead of making the last turtle chase the first one, make it move on a circle forever. It will create an interesting animation shown above.

Source Code:

import turtle
import random
import colorsys

screen = turtle.Screen()
screen.tracer(0,0)
screen.setup(1000,1000)
screen.title('Chase the Cycler - PythonTurtle.Academy')
turtle.hideturtle()

n=200
chasers = []
for i in range(n):
    chasers.append(turtle.Turtle())

h = 0
for i in range(n):
    c = colorsys.hsv_to_rgb(h,1,0.8)
    h += 1/n
    chasers[i].color(c)
    chasers[i].up()
    chasers[i].goto(random.uniform(-500,500), random.uniform(-500,500))
chasers[n-1].goto(0,-300)
chasers[n-1].shape('circle')
chasers[n-1].shapesize(1)

def chase():
    for i in range(n-1):
        angle = chasers[i].towards(chasers[i+1])
        chasers[i].seth(angle)
    chasers[n-1].left(2)
    chasers[n-1].fd(10)
    for i in range(n-1):
        chasers[i].fd(10)
    screen.update()
    screen.ontimer(chase,1000//20)
    
chase()