AI Tic-Tac-Toe with Minimax Tree (Source Code Included)

Use minimax tree search algorithm with alpha-beta pruning to write AI Tic-Tac-Toe player. You may also want to add randomness to your AI player so that it won’t play the same move every time. Here is more detail information on minimax tree and alpha-beta pruning. Your program should play against a human player. Therefore, you need to use onclick() function to handle mouse click events.

Tic-Tac-Toe with Minimax Tree

Source Code:

import turtle
import copy
import random

screen = turtle.Screen()
screen.setup(800,800)
screen.title("Tic Tac Toe - PythonTurtle.Academy")
screen.setworldcoordinates(-5,-5,5,5)
screen.bgcolor('light gray')
screen.tracer(0,0)
turtle.hideturtle()

def draw_board():
    turtle.pencolor('green')
    turtle.pensize(10)
    turtle.up()
    turtle.goto(-3,-1)
    turtle.seth(0)
    turtle.down()
    turtle.fd(6)
    turtle.up()
    turtle.goto(-3,1)
    turtle.seth(0)
    turtle.down()
    turtle.fd(6)
    turtle.up()
    turtle.goto(-1,-3)
    turtle.seth(90)
    turtle.down()
    turtle.fd(6)
    turtle.up()
    turtle.goto(1,-3)
    turtle.seth(90)
    turtle.down()
    turtle.fd(6)

def draw_circle(x,y):
    turtle.up()
    turtle.goto(x,y-0.75)
    turtle.seth(0)
    turtle.color('red')
    turtle.down()
    turtle.circle(0.75, steps=100)

def draw_x(x,y):
    turtle.color('blue')
    turtle.up()
    turtle.goto(x-0.75,y-0.75)
    turtle.down()
    turtle.goto(x+0.75,y+0.75)
    turtle.up()
    turtle.goto(x-0.75,y+0.75)
    turtle.down()
    turtle.goto(x+0.75,y-0.75)
    
def draw_piece(i,j,p):
    if p==0: return
    x,y = 2*(j-1), -2*(i-1)
    if p==1:
        draw_x(x,y)
    else:
        draw_circle(x,y)
    
def draw(b):
    draw_board()
    for i in range(3):
        for j in range(3):
            draw_piece(i,j,b[i][j])
    screen.update()

# return 1 if player 1 wins, 2 if player 2 wins, 3 if tie, 0 if game is not over
def gameover(b):
    if b[0][0]>0 and b[0][0] == b[0][1] and b[0][1] == b[0][2]: return b[0][0]
    if b[1][0]>0 and b[1][0] == b[1][1] and b[1][1] == b[1][2]: return b[1][0]
    if b[2][0]>0 and b[2][0] == b[2][1] and b[2][1] == b[2][2]: return b[2][0]
    if b[0][0]>0 and b[0][0] == b[1][0] and b[1][0] == b[2][0]: return b[0][0]
    if b[0][1]>0 and b[0][1] == b[1][1] and b[1][1] == b[2][1]: return b[0][1]
    if b[0][2]>0 and b[0][2] == b[1][2] and b[1][2] == b[2][2]: return b[0][2]
    if b[0][0]>0 and b[0][0] == b[1][1] and b[1][1] == b[2][2]: return b[0][0]
    if b[2][0]>0 and b[2][0] == b[1][1] and b[1][1] == b[0][2]: return b[2][0]
    p = 0
    for i in range(3):
        for j in range(3):
            p += (1 if b[i][j] > 0 else 0)
    if p==9: return 3
    else: return 0
    
def play(x,y):
    global turn
    if turn=='x': return
    
    i = 3-int(y+5)//2
    j = int(x+5)//2 - 1
    if i>2 or j>2 or i<0 or j<0 or b[i][j]!=0: return
    if turn == 'x': b[i][j], turn = 1, 'o'
    else: b[i][j], turn = 2, 'x'
    draw(b)
    r = gameover(b)
    if r==1:
        screen.textinput("Game over!","X won!")
    elif r==2:
        screen.textinput("Game over!","O won!")
    elif r==3:
        screen.textinput("Game over!", "Tie!")
    if r>0: turtle.bye()
    _,move = max_node(b,-2,2)
    b[move[0]][move[1]] = 1
    draw(b)
    r = gameover(b)
    if r==1:
        screen.textinput("Game over!","X won!")
    elif r==2:
        screen.textinput("Game over!","O won!")
    elif r==3:
        screen.textinput("Game over!", "Tie!")
    if r>0: turtle.bye()
    turn = 'o'
    
b = [ [ 0,0,0 ], [ 0,0,0 ], [ 0,0,0 ] ]    
draw(b)
turn = 'x'
screen.onclick(play)
#turtle.mainloop()

def max_node(b,alpha,beta):
    r = gameover(b)
    if r==1: return 1,None
    elif r==2: return -1,None
    elif r==3: return 0,None

    score = -2
    # find all possible next moves
    pm = list()
    for i in range(3):
        for j in range(3):
            if b[i][j] == 0: pm.append((i,j))
    random.shuffle(pm)
    for (i,j) in pm:
        if b[i][j] == 0:
            nb = copy.deepcopy(b)
            nb[i][j] = 1
            cs,_ = min_node(nb,alpha,beta)
            if score<cs:
                score=cs
                move = (i,j)
            alpha = max(alpha,cs)
            if alpha>=beta: return score,move
    return score,move

def min_node(b,alpha,beta):
    r = gameover(b)
    if r==1: return 1,None
    elif r==2: return -1,None
    elif r==3: return 0,None

    score = 2
    # find all possible next moves
    pm = list()
    random.shuffle(pm)
    for i in range(3):
        for j in range(3):
            if b[i][j] == 0: pm.append((i,j))
    for (i,j) in pm:
        if b[i][j] == 0:
            nb = copy.deepcopy(b)
            nb[i][j] = 2
            cs,_ = max_node(nb,alpha,beta)
            if score>cs:
                score=cs
                move = (i,j)
            beta = min(beta,cs)
            if alpha>=beta: return score,move
    return score,move

_,move = max_node(b,-2,2)
b[move[0]][move[1]] = 1
draw(b)
turn = 1
screen.mainloop()    

Related Projects:

Animating Knight’s Minimum Move with Python Turtle (Source Code Included)

Write a program that animates the move of a knight in a chess board from any source to any destination with the minimum number of steps. You may need to use Breadth First Search (BFS) with Queue data structure.

Source Code:

import turtle
import time
import sys

turtle.setup(800,800)
turtle.setworldcoordinates(-250,-250,250,250)
turtle.title("Knight's Minimum Moves - PythonTurtle.Academy")

def draw_square(x,y,size,color):
    turtle.up()
    turtle.goto(x,y)
    turtle.seth(0)
    turtle.down()
    turtle.begin_fill()
    turtle.fillcolor(color)
    for i in range(4):
        turtle.fd(size)
        turtle.left(90)
    turtle.end_fill()
        
def draw_board(src=(-2,-2),dest=(-2,-2), mlist=[]):
    turtle.pencolor("black")
    y = -200
    piecesize = 50
    startpiececolor = "darkgray"
    for i in range(8):
        x = -200
        piececolor = startpiececolor
        for j in range(8):
            if (j+1,i+1)==src:
                draw_square(x,y,piecesize,'light blue')
            elif (j+1,i+1)==dest:
                draw_square(x,y,piecesize,'pink')
            elif (j+1,i+1) in mlist:
                draw_square(x,y,piecesize,'light green')                
            else:   
                draw_square(x,y,piecesize,piececolor)
            x += piecesize
            if piececolor == "darkgray":
                piececolor = "lightgray"
            else:
                piececolor = "darkgray"
        y += piecesize
        if startpiececolor == "darkgray":
            startpiececolor = "lightgray"
        else:
            startpiececolor = "darkgray"
    
def draw_knight(pos):
    xpos = 50*(pos[0]-1) - 175
    ypos = 50*(pos[1]-1) - 195
    turtle.up()
    turtle.goto(xpos,ypos)
    turtle.write('\u265e',align='center',font=('Arial',40,'normal'))

class node:
    def __init__(self,val,nxt=None):
        self.value=val
        self.next=nxt

class LinkedList:
    def __init__(self,it=None):
        self.head = None
        self.tail = None
        self.length = 0
        if it is None: return
        for x in it:
            self.insert_at_tail(x)

    def insert_at_head(self,k):
        if self.head is None:
            self.head = node(k)
            self.tail = self.head
        else:
            p = node(k,self.head)
            self.head = p
        self.length += 1

    def insert_after(self,p,k):
        if self.length < p or p < 0:
            raise Exception('Linked List doesn\'t have position '+str(p))
        if p==0:
            self.insert_at_head(k)
            return
        q = self.head
        for _ in range(p-1):
            q = q.next
        q.next = node(k,q.next)
        
    def insert_at_tail(self,k):
        if self.tail is None:
            self.head = node(k)
            self.tail = self.head
        else:
            self.tail.next = node(k)
            self.tail = self.tail.next
        self.length += 1

    def __iter__(self):
        p = self.head
        while p is not None:
            yield p.value
            p = p.next
            
    def __len__(self):
        return self.length
    
    def __str__(self):
        s = ""
        p = self.head
        while p is not None:
            s += str(p.value) + '->'
            p = p.next
        s += 'None'
        return s

    def delete_from_head(self):
        if self.head is None: return
        self.length -= 1
        self.head = self.head.next
        if self.head is None:
            self.tail = None

    def delete_from_tail(self):
        if self.head is None: return
        self.length -= 1
        if self.head == self.tail: self.head = self.tail = None
        p = self.head
        while p.next != self.tail:
            p = p.next
        p.next = None
        self.tail = p

class Queue:
    def __init__(self):
        self.ll = LinkedList()
        self.length = len(self.ll)

    def push(self,k):
        self.ll.insert_at_tail(k)

    def pop(self):
        if len(self.ll)==0:
            raise Exception('Queue is empty')
        self.ll.delete_from_head()

    def top(self):
        if len(self.ll)==0:
            raise Exception('Queue is empty')
        return self.ll.head.value;
        
    def empty(self):
        return len(self.ll)==0

    def __len__(self):
        return len(self.ll)

class position:
    def __init__(self,pos,dist,parent):
        self.pos = pos
        self.dist = dist
        self.parent = parent

moves = [ (1,2), (1,-2), (-1,2),(-1,-2), (2,-1), (2,1), (-2,1), (-2,-1) ]

def valid_position(pos):
    if pos[0] < 1 or pos[0] > 8 or pos[1] < 1 or pos[1] > 8: return False
    return True

def minimum_knight_move(src, dest):
    q = Queue()
    s = set()
    q.push(position(src,0,None))
    s.add(src)
    while not q.empty():
        current = q.top()
        pos = current.pos
        dist = current.dist
        q.pop()
        # try all possible moves from here
        for m in moves:
            new_pos = (pos[0]+m[0],pos[1]+m[1])
            if valid_position(new_pos) and new_pos not in s:
                if new_pos == dest: return current
                s.add(new_pos)
                q.push(position(new_pos,dist+1,current))
    return -1
    
if __name__=='__main__':
    turtle.speed(0)
    turtle.hideturtle()
    turtle.tracer(0)
    while True:
        turtle.clear()
        draw_board()
        src = (-1,-1)
        dest = (-1,-1)
        while src[0] < 0 or src[0] > 8 or src[1] < 0 or src[1] > 8:
            srctext=turtle.textinput("Begin Position","Please enter the starting position (e.g. 2 4):")
            if srctext is None: sys.exit(0)
            try:
                src = tuple(map(int,srctext.split()))
            except:
                src = (-1,-1)
        draw_board(src)
        draw_knight(src)
        while dest[0] < 0 or dest[0] > 8 or dest[1] < 0 or dest[1] > 8:
            desttext=turtle.textinput("End Position","Please enter the target position (e.g. 8 5):")
            if desttext is None: sys.exit(0)
            try:
                dest = tuple(map(int,desttext.split()))
            except:
                dest = (-1,-1)
        draw_board(src,dest)
        draw_knight(dest)
        current = minimum_knight_move(src,dest)
        s = LinkedList()
        s.insert_at_head(dest)
        mlist = list()
        while current is not None:
            s.insert_at_head(current.pos)
            current = current.parent
        for pos in s:
            turtle.clear()
            mlist.append(pos)
            draw_board(src,dest,mlist)
            draw_knight(pos)
            time.sleep(1)
            turtle.update()

24 Game Solver with Python Turtle (Source Code Included)

24 Game is a mathematical puzzle that make 4 numbers make evaluate to 24 with basic arithmetical operators ( +, -, ×, ÷). For example, given 4 numbers 1,5,5,5, we can make expression (5-(1÷5))×5, which equals to 24.

We can use brute force to solve this problem with a Python Program. There are at most 24×5×4×4×4 = 7,680 different expressions can be made with 4 numbers. It may appear to be hard for us to do by hand, it should be very easy for computer program to solve. The following is the source code for this project:

import turtle
screen = turtle.Screen()
screen.setup(500,500)
screen.title("24 Game Solver - PythonTurtle.Academy")
turtle.hideturtle()
turtle.speed(0)
turtle.up()

def permutation(a):
    if len(a) == 1: return [[a[0]]]
    res = permutation(a[1:])
    r = []
    for x in res:
        # need to insert n into x: into all possible position
        for i in range(len(x)+1):
            y = x.copy()
            y.insert(i,a[0])
            if y not in r:
                r.append(y)
    return r

op = ['+', '−', '×', '÷']
def evaluate(a):
    v = []
    for x in a:
        if type(x) is int:
            v.append(x)
        else:
            num2 = v.pop()
            num1 = v.pop()
            if x=='+': v.append(num1+num2)
            elif x=='−': v.append(num1-num2)
            elif x=='×': v.append(num1*num2)
            else:
                if num2 != 0: v.append(num1/num2)
                else: return 0
    return v[0]


class tree_node:
    def __init__(self,value,left,right):
        self.value = value
        self.left = left
        self.right = right

def inorder(root):
    if type(root.value) is int: return str(root.value)
    if type(root.left.value) is not int: left = '('+inorder(root.left)+')'
    else: left = inorder(root.left)
    if type(root.right.value) is not int: right = '('+inorder(root.right)+')'
    else: right = inorder(root.right)    
    return left + root.value + right
    
def convert_to_infix(a):
    # convert to infix
    # convert to tree first
    v = list()
    for x in a:
        if type(x) is int:
            v.append(tree_node(x,None,None))
        else:
            t2 = v.pop()
            t1 = v.pop()
            v.append(tree_node(x,t1,t2))
    return inorder(v[0])
            
def twentyfour(a):
    # postfix
    # try n,n,n,n, p,p,p
    for i in range(4):
        for j in range(4):
            for k in range(4):
                b = a.copy()
                b.append(op[i])
                b.append(op[j])
                b.append(op[k])
                v = evaluate(b)
                if v==24.0:
                    return(convert_to_infix(b))

    # try n,n,n,p,p,n,p
    for i in range(4):
        for j in range(4):
            for k in range(4):
                b = a[:3]
                b.append(op[i])
                b.append(op[j])
                b.append(a[3])
                b.append(op[k])
                v = evaluate(b)
                if v==24.0:
                    return(convert_to_infix(b))

    # try n,n,n,p,n,p,p
    for i in range(4):
        for j in range(4):
            for k in range(4):
                b = a[:3]
                b.append(op[i])
                b.append(a[3])
                b.append(op[j])
                b.append(op[k])
                v = evaluate(b)
                if v==24.0:
                    return(convert_to_infix(b))

    # try n,n,p,n,p,n,p
    for i in range(4):
        for j in range(4):
            for k in range(4):
                b = a[:2]
                b.append(op[i])
                b.append(a[2])
                b.append(op[j])
                b.append(a[3])
                b.append(op[k])
                v = evaluate(b)
                if v==24.0:
                    return(convert_to_infix(b))
    # try n,n,p,n,n,p,p
    for i in range(4):
        for j in range(4):
            for k in range(4):
                b = a[:2]
                b.append(op[i])
                b.append(a[2])
                b.append(a[3])
                b.append(op[j])
                b.append(op[k])
                v = evaluate(b)
                if v==24.0:
                    return(convert_to_infix(b))
    return ''            

while True:
    fournumbers = []
    while len(fournumbers) != 4:
        numbers = screen.textinput("24 Game Solver", "Enter four numbers separated by spaces: ")
        fournumbers = list(map(int,numbers.split()))
    p = permutation(fournumbers)
    foundsolution = False
    turtle.clear()
    for a in p:
        r = twentyfour(a)
        if len(r)>0:
            turtle.goto(0,0)
            turtle.color('royal blue')
            turtle.write(r,font=('Courier', 45, 'bold'), align='center')
            foundsolution = True
            break
    if not foundsolution:
        turtle.color('red')
        turtle.write("No solution",font=('Courier', 45, 'bold'), align='center')

Quick Sort Animation with Python and Turtle (with Source Code)

Merge Sort algorithm is fast but it requires additional array and additional copying. Quick Sort is even faster than Merge Sort. Implement Quick Sort algorithm and animate it!

Here is the source code:

import turtle
import random
import time

screen = turtle.Screen()
screen.setup(1000,1000)
screen.tracer(0,0)
screen.title('Quick Sort Animation - PythonTurtle.Academy')
turtle.speed(0)
turtle.hideturtle()

def draw_bar(x,y,w,h):
    turtle.up()
    turtle.goto(x,y)
    turtle.seth(0)
    turtle.down()
    turtle.begin_fill()
    turtle.fd(w)
    turtle.left(90)
    turtle.fd(h)
    turtle.left(90)
    turtle.fd(w)
    turtle.left(90)
    turtle.fd(h)
    turtle.left(90)
    turtle.end_fill()

def draw_bars(v,n,currenti=-1,currentj=-1):
    turtle.clear()
    x = -400
    w = 800/n
    for  i in range(n):
        if i == currenti: turtle.fillcolor('red')
        elif i == currentj: turtle.fillcolor('blue')
        else: turtle.fillcolor('gray')
        draw_bar(x,-400,w,v[i])
        x += w
    screen.update()

def partition(v,x,y):
    p = random.randint(x,y)
    v[p], v[y] = v[y], v[p]
    pivot = v[y]
    i, j = x, y-1
    while i <= j:
        while v[i] <= pivot and i <= j:
            draw_bars(v,n,i,j)
            i += 1
        while v[j] > pivot and j >= i:
            draw_bars(v,n,i,j)
            j -= 1
        if i < j:
            draw_bars(v,n,i,j)
            v[i], v[j] = v[j], v[i]
    v[i], v[y] = v[y], v[i]
    draw_bars(v,n,i,y)
    return i

def quick_sort(v,x,y):
    if x >= y:
        return
    m = partition(v,x,y)
    quick_sort(v,x,m-1)
    quick_sort(v,m+1,y)
    
n = 50
v = [0] * n
for i in range(n):
    v[i] = random.randint(1,800)

t1 = time.time()
quick_sort(v,0,n-1)
turtle.clear()
draw_bars(v,n,-1)
turtle.update()
t2 = time.time()
print('elapsed time=', t2-t1)

Merge Sort Animation with Python and Turtle (with Source Code)

In previous sorting animations, we animated selection, insertion, and bubble sort. They are slow O(n^2) slow sorting algorithm. Merge Sort, a divide and conquer algorithm, is a much faster sorting algorithm with the worst case running time of O(n*logn). However, unlike previous sorting algorithms, it requires another array to be able to merge. Implement Merge Sorting and animate it!

Here is the source code:

import turtle
import random
import time

screen = turtle.Screen()
screen.setup(1000,1000)
screen.setworldcoordinates(-1000,-1000,1000,1000)
screen.tracer(0,0)
screen.title('Merge Sort Animation - PythonTurtle.Academy')
turtle.speed(0)
turtle.hideturtle()

def draw_bar(x,y,w,h):
    turtle.up()
    turtle.goto(x,y)
    turtle.seth(0)
    turtle.down()
    turtle.begin_fill()
    turtle.fd(w)
    turtle.left(90)
    turtle.fd(h)
    turtle.left(90)
    turtle.fd(w)
    turtle.left(90)
    turtle.fd(h)
    turtle.left(90)
    turtle.end_fill()

def draw_bars(v,w,n,currenti=-1,currentj=-1):
    turtle.clear()
    x = -400
    wd = 800/n
    for  i in range(n):
        if i == currenti: turtle.fillcolor('red')
        elif i == currentj: turtle.fillcolor('blue')
        else: turtle.fillcolor('gray')
        draw_bar(x,100,wd,v[i])
        x += wd
        
    x = -400
    for  i in range(n):
        turtle.fillcolor('gray')
        draw_bar(x,-900,wd,w[i])
        x += wd
    screen.update()

def merge(v,w,a,b,x,y):
    i,j, k = a,x,a
    while i<=b and j<=y:
        if v[i] < v[j]: w[k],i = v[i], i+1
        else: w[k], j = v[j], j+1
        draw_bars(v,w,n,i,j)
        k += 1
    while i<=b:
        w[k],i,k = v[i],i+1,k+1
        draw_bars(v,w,n,i,j)
    while j<=y:
        w[k],j,k = v[j],j+1,k+1
        draw_bars(v,w,n,i,j)
    for i in range(a,y+1):
        v[i] = w[i]
        draw_bars(v,w,n,i)
    
def merge_sort(v,w,x,y):
    if x >= y:
        return
    m = (x+y)//2
    merge_sort(v,w,x,m)
    merge_sort(v,w,m+1,y)
    merge(v,w,x,m,m+1,y)
    
n = 50
v = [0] * n
w = [0] * n
for i in range(n):
    v[i] = random.randint(1,800)

t1 = time.time()
merge_sort(v,w,0,n-1)
t2 = time.time()
print('elapsed time=', t2-t1)

What’s Next?

Quick Sort Animation

Selection Sort Animation with Python and Turtle (Source Code Included)

Generate 50 random numbers and draw them as bars. Following the steps of selection sort algorithm and redraw the bar every single step to show how bubble sort works.

Compare against Bubble Sort and Insertion Sort. Which is the fastest? Which is the slowest?

Source Code:

import turtle
import random
import time

screen = turtle.Screen()
screen.setup(1000,1000)
screen.tracer(0,0)
screen.title('Selection Sort Animation - PythonTurtle.Academy')
turtle.speed(0)
turtle.hideturtle()

def draw_bar(x,y,w,h):
    turtle.up()
    turtle.goto(x,y)
    turtle.seth(0)
    turtle.down()
    turtle.begin_fill()
    turtle.fd(w)
    turtle.left(90)
    turtle.fd(h)
    turtle.left(90)
    turtle.fd(w)
    turtle.left(90)
    turtle.fd(h)
    turtle.left(90)
    turtle.end_fill()

def draw_bars(v,n,current):
    x = -400
    w = 800/n
    for  i in range(n):
        if i == current: turtle.fillcolor('red')
        else: turtle.fillcolor('gray')
        draw_bar(x,-400,w,v[i])
        x += w

def select_smallest(v,i,k):
    smallest = v[i]
    smallest_index = i
    for j in range(i+1,k):
        if v[j] < smallest:
            smallest = v[j]
            smallest_index = j
        turtle.clear()
        draw_bars(v,n,j)
        turtle.update()
    return smallest_index
        
def selection_sort(v,k):
    for i in range(k-1):
        j = select_smallest(v,i,k) # smallest index from ith to last
        v[i], v[j] = v[j], v[i] # swap with the smallest
        turtle.clear()
        draw_bars(v,n,i)
        turtle.update()
        
n = 50
v = [0] * n
for i in range(n):
    v[i] = random.randint(1,800)

t1 = time.time()
selection_sort(v,n)
turtle.clear()
draw_bars(v,n,-1)
turtle.update()
t2 = time.time()
print('elapsed time=', t2-t1)

Insertion Sort Animation with Python and Turtle (Source Code Included)

Generate 50 random numbers and draw them as bars. Following the steps of insertion sort algorithm and redraw the bar every single step to show how bubble sort works.

Compare against Bubble Sort. Which is faster?

Source Code:

import turtle
import random
import time

screen = turtle.Screen()
screen.setup(1000,1000)
screen.tracer(0,0)
screen.title('Insertion Sort Animation - PythonTurtle.Academy')
turtle.speed(0)
turtle.hideturtle()

def draw_bar(x,y,w,h):
    turtle.up()
    turtle.goto(x,y)
    turtle.seth(0)
    turtle.down()
    turtle.fillcolor('gray')
    turtle.begin_fill()
    turtle.fd(w)
    turtle.left(90)
    turtle.fd(h)
    turtle.left(90)
    turtle.fd(w)
    turtle.left(90)
    turtle.fd(h)
    turtle.left(90)
    turtle.end_fill()

def draw_bars(v,n):
    x = -400
    w = 800/n
    for  i in range(n):
        draw_bar(x,-400,w,v[i])
        x += w

def insert(v,k):
    x = v[k]
    for i in range(k-1,-1,-1):
        if v[i] > x: v[i+1] = v[i]
        else:
            v[i+1] = x
            return
        turtle.clear()
        draw_bars(v,n)
        screen.update()
    v[0] = x
    
def insertion_sort(v,k):
    if k == 1: return
    insertion_sort(v,k-1)
    insert(v,k-1)
    
n = 50
v = [0] * n
for i in range(n):
    v[i] = random.randint(1,800)

t1 = time.time()
insertion_sort(v,n)
t2 = time.time()
print('elapsed time=', t2-t1)

Asteroids Game with Python Turtle

Develop the Asteroids Game with Python Turtle. Because this project is fairly large, you may want to use Object Oriented Programming by defining several classes and put them in separate files. You may also need to know how to detect collisions. These projects will help you develop this game:

You can also add music and sound effects to this game with PyGame’s sound library.